
LLNL-CONF-641294

Optimal Hierarchical Layouts for
Cache-Oblivious Search Trees

P. Lindstrom, D. Rajan

July 22, 2013

IEEE International Conference on Data Engineering
Chicago, IL, United States
March 31, 2014 through April 4, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Optimal Hierarchical Layouts for
Cache-Oblivious Search Trees

Peter Lindstrom and Deepak Rajan
Center for Applied and Scientific Computing

Lawrence Livermore National Laboratory
Livermore, California 94550, USA
{pl,rajan3}@llnl.gov

Abstract—This paper proposes a general framework for
generating cache-oblivious layouts for binary search trees. A
cache-oblivious layout attempts to minimize cache misses on any
hierarchical memory, independent of the number of memory
levels and attributes at each level such as cache size, line
size, and replacement policy. Recursively partitioning a tree
into contiguous subtrees and prescribing an ordering amongst
the subtrees, Hierarchical Layouts generalize many commonly
used layouts for trees such as in-order, pre-order and breadth-
first. They also generalize the various flavors of the van Emde
Boas layout, which have previously been used as cache-oblivious
layouts. Hierarchical Layouts thus unify previous attempts at
deriving layouts for search trees.

The paper then derives a new locality measure (the Weighted
Edge Product) that mimics the probability of cache misses at
multiple levels, and shows that layouts that reduce this measure
perform better. We analyze the various degrees of freedom in the
construction of Hierarchical Layouts, and investigate the relative
effect of each of these decisions in the construction of cache-
oblivious layouts. Optimizing the Weighted Edge Product for
complete binary search trees, we introduce the MINWEP layout,
and show that it outperforms previously used cache-oblivious
layouts by almost 20%.

I. INTRODUCTION

In today’s computer architectures, the memory hierarchy is
becoming increasingly complex, both in terms of number of
levels and difference in performance from one level to the next.
As a result, algorithms and data structures that are designed
for flat (or even two-level) memory with uniform access times
can result in significantly suboptimal performance. In this
paper, we are interested in improving memory access locality
for search trees via data reordering. The classic search tree
is the B-tree [1], which has been designed for a two-level
cache hierarchy, and is usually optimized for a particular block
transfer size (e.g., a cache line or disk block). B-trees have
been extended to more than two levels of cache hierarchy [2],
but it is not clear if they can be successfully optimized for
an arbitrarily complex multi-level cache hierarchy, with one
level per transfer block size. Furthermore, B-trees are known
to perform poorly when the nodes of the search trees are
of different sizes (e.g., when the search keys are variable-
length) [3]. As a result, cache-oblivious search trees have been
suggested in the literature. In this paper, we present a new
locality measure that can be used to derive cache-oblivious
data structures. Focusing our attention on search trees, we show
how optimizing our locality measure results in better cache-
oblivious search tree layouts than prior layouts.

The fundamental structure commonly employed for cache-
oblivious search trees is the van Emde Boas layout. First
introduced by Prokop [4], these recursively defined layouts are
similar to van Emde Boas trees, hence the name. In [5], this
layout was shown to result in much better binary search times
than simpler orderings such as breadth-first and depth-first pre-
and in-order. Repeating these experiments to measure the L1
cache miss rates for these orderings as well as our proposed
layout, MINWEP, we present the results as a function of
tree height in Figure 1. Our experiments confirm that the van
Emde Boas trees perform significantly better than the simpler
orderings. As observed in [5], the in-order layout performs
particularly poorly, with a cache miss rate close to 100%. This
can be attributed to a limited associativity of the cache; for
complete binary trees, the in-order layout arranges the nodes at
the top of the tree at positions that are large powers of two apart
from each other. We also observe that our proposed layout
MINWEP consistently reduces L1 cache misses by about 20%
compared to the van Emde Boas layout.

Minor variants of these van Emde Boas layouts have since
been used in a variety of other settings. In [6], the authors
introduce a very similar layout that differs only in how the
tree is partitioned at each branch of the recursion. Using this
layout as the basic building block, they present dynamic search
trees, and refer to these as cache-oblivious B-trees. In [7],
the authors provide bounds on the asymptotic cost of cache-
oblivious searching. By analyzing a generalized version of

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 20 24 28

L1
 c

ac
h

e
 m

is
s

ra
te

tree height

IN-ORDER PRE-ORDER BREADTH-FIRST VAN EMDE BOAS MINWEP

Fig. 1: L1 cache miss rate as a function of tree height for binary searches.

g = bh/2c

h

Fig. 2: Hierarchical layouts of a binary tree formed by recursive partitioning
into contiguous subtrees. In-order (blue) and pre/post-order (red) subtrees are
shown for the van Emde Boas layout (left) and our MINWEP layout (right).
The arrows indicate the ordering within and among the subtrees.

the van Emde Boas layout, they provide a modified version
that is arbitrarily close to the asymptotic bound. In [3], [8],
the authors address the problem of building cache-oblivious
layouts of search trees with variable-sized search keys. They
use a modified version of the van Emde Boas layout in which
the tree is partitioned differently. In [9], the authors present
two cache-oblivious streaming B-trees – data structures that
implement cache-oblivious search trees optimized for dynamic
insertions and deletions. Again, these rely on a version of the
van Emde Boas layout with a slightly different partitioning
scheme. We note that cache-oblivious data structures are not
limited to search trees. They have been proposed in a variety
of settings, some of which include hash tables [10], meshes
[11], [12], and Bloom filters [13].

A. Contribution: Cache-oblivious Hierarchical Layouts

We describe a general framework for generating search tree
layouts, and present new orderings from this framework that
result in better cache-oblivious search tree layouts than those
suggested in the literature. We refer to all layouts that fit the
new framework as Hierarchical Layouts.

Consider a tree T of height h, i.e., with h levels of nodes.
Counting the levels in a tree of height h from top to bottom,
the root is on level 0 and the leaves are on level h−1. Observe
that level i has 2i nodes. For ease of exposition, we restrict
our discussion to complete binary trees; therefore the number
of nodes is 2h − 1.

Any Hierarchical Layout can be described recursively as
follows: Partition T by cutting it horizontally between level
g − 1 and g, which results in a top subtree of height g
with 2g−1 leaves and 2g bottom subtrees (2 for every leaf
in the top subtree) of height h − g. Any relative ordering
of the recursive subtrees that arranges them contiguously
in memory constitutes a Hierarchical Layout. Two obvious
relative orderings (out of the exponentially many choices) are
those where the top subtree is arranged either in the middle of
all the bottom subtrees (in-order), or at one end (pre-order).
Figure 2 illustrates these two cases using the colors blue and
red, for in- and pre-order, respectively. The node ordering
within each subtree is given by recursive application of this
decomposition, until each subtree consists of a single node.

The effectiveness of any particular Hierarchical Layout as
a cache-oblivious search tree depends on the relative ordering

of subtrees and on the height of the top subtree g. In this paper,
we focus on finding optimal cuts and orderings of the subtrees
to maximize locality and minimize cache misses, and propose
a new cache-oblivious Hierarchical Layout.

We also show that the widely used van Emde Boas layouts
are a special case of Hierarchical Layouts; therefore any
cache-oblivious search tree data structure that utilizes a van
Emde Boas layout can be improved by switching to our
proposed layout. In particular, the performance of various
cache-oblivious dynamic search trees (cache oblivious B-trees
that utilize variants of van Emde Boas layouts as building
blocks [3], [6], [8], [9]) can be improved by utilizing our
proposed Hierarchical Layout (MINWEP) as the basic building
block instead. The main take-home message of this paper is
that the widely used version of the van Emde Boas layout is
not the best Hierarchical Layout. Significantly better cache-
oblivious layouts can be obtained by considering Hierarchical
Layouts that minimize our locality measure.

Section II presents a nomenclature that allows us to con-
cisely characterize Hierarchical Layouts. In Section III, we
motivate some simple improvements to the van Emde Boas lay-
out. Section IV describes a mathematical measure of locality
for tree orderings that correlates well with cache miss ratios,
thus resulting in cache-oblivious layouts. We analyze which
Hierarchical Layouts perform better with respect to this new
measure, the Weighted Edge Product. We improve the layout
further in Section V by deriving MINWEP, the Hierarchical
Layout that minimizes the Weighted Edge Product. Figure 2
presents a simplified illustration of the key differences between
the van Emde Boas layout and MINWEP. Our experiments
indicate that MINWEP consistently improves performance by
about 20% compared to the layouts described in the literature.

II. HIERARCHICAL LAYOUTS: NOTATION AND
NOMENCLATURE

At any branch of the recursion describing a Hierarchical
Layout, we use A to denote the top subtree and LA to denote
the set of leaves in the top subtree A. Given a leaf node x in
LA, we say that a bottom subtree formed by a child c of x
and the descendants of c is a child subtree of x.

A Hierarchical Layout is given entirely by (1) the height at
which the tree is partitioned, (2) the position of the top subtree
relative to the bottom subtrees, and (3) the relative ordering
of the bottom subtrees. This definition allows for a very large
combination of cut heights and orderings. For this reason,
we impose additional restrictions; the motivation behind some
of them will become clear later in the paper. We refer to
layouts belonging to this restricted set as Recursive Layouts
because they can be categorized entirely using a small set of
recursive rules and parameters, allowing for a more compact
nomenclature than the more general Hierarchical Layout.

In a Recursive Layout, at any branch of the recursion that
cuts a subtree into its top subtree A and the corresponding
bottom subtrees, we enforce the following restrictions. (a) The
top subtree A is arranged either in-order or pre-order. (b) The
top subtree obtained in the partitioning of A must be arranged
relative to the bottom subtrees in the same fashion as A. (c) If
A is arranged in-order, we choose the children of the leftmost
2g−2 leaves in LA to be the bottom subtrees on the left of the

top subtree. (d) If any bottom subtree is arranged in-order, all
bottom subtrees that are arranged further away from A are also
arranged in-order. (e) Looking outwards from A, the bottom
subtrees are either ordered in the same order as that of the
parent leaves LA or in the reverse order. (f) If A is arranged
pre-order, then it is placed on the side of the bottom subtrees
that is closer to its parent leaf. Thus, we use pre-order layouts
to refer to both pre-order and post-order arrangements of the
top subtree, depending upon the context. (g) The cut height g
is a function only of the height of the subtree and whether the
subtree is arranged in- or pre-order.

Based on the preceding discussion, we present a new
nomenclature for categorizing Recursive Layouts, an important
subset of Hierarchical Layouts. A Recursive Layout is catego-
rized as P for pre-order and I for in-order to indicate the
arrangement for the outermost branch of the recursion (when
we cut the tree T itself). At each branch of the recursion, the
position of the first in-order bottom subtree, counting outwards
from the top subtree, is indicated as a subscript. If all the
bottom subtrees are arranged pre-order, then we denote this
by ∞. The cut height g (as a function of the height of the
subtree h) is indicated as a superscript. We indicate a layout
where the bottom subtrees are arranged in reverse order of the
leaves LA using the ∼ symbol on top.

Bringing this all together, we see that Ĩbh/2c2 is the Recur-
sive Layout that always cuts a subtree of height h at height
bh/2c, arranges the top subtree in the outermost branch of the
recursion in-order, arranges all bottom subtrees in the reverse
order of the top subtree leaves, and arranges the first bottom
subtree pre-order and all the other bottom subtrees in-order.
In Table I, we categorize all the layouts we consider in this
paper using this nomenclature. All the layouts described in this
paper belong to the restricted set of Recursive Layouts.

III. CACHE-OBLIVIOUS HIERARCHICAL LAYOUTS

In this section, we motivate better cache-oblivious order-
ings within the framework of Hierarchical Layouts. First, we
review the van Emde Boas layouts used in the literature,
which are a special case of Hierarchical Layouts. In Prokop’s
ordering [4], the subtrees are cut at height g = bh/2c, the
top subtree is placed before the bottom subtrees, and then
this ordering strategy is applied recursively to each subtree
(see Figure 2). The bottom subtrees are arranged in the same
order as their parent leaves LA, from left to right. Henceforth,
we refer to this version of the van Emde Boas layout as the
pre-order van Emde Boas layout, and denote it as PRE-VEB.
In our nomenclature, PRE-VEB is Pbh/2c∞ (see Table I).

Figure 7f illustrates PRE-VEB for a tree of height 6. The
number inside each node is its position in the layout, ranging
from 1 to 63. Observe that at every branch of the recursion,
the top subtree is arranged pre-order. In the outermost branch
of the recursion, the nodes in the top three levels are arranged
first (positions 1 to 7). Figure 7 also indicates the length of
each edge, i.e., the difference in position of its nodes, using
lines whose thickness is inversely proportional to the length.

In Bender’s layout [6], the authors set g = h−2dlog2(h/2)e.
In other words, the height of the bottom subtrees equals the
largest power of two smaller than h. The authors refer to their
layout as a van Emde Boas layout since it is similar to the one

introduced in [4]. Nevertheless, we make the distinction that
only Hierarchical Layouts with g = bh/2c are van Emde Boas
layouts. BENDER is identical to PRE-VEB for trees whose
height is a power of two. For all other heights, BENDER
layouts have smaller top subtrees, compared to PRE-VEB.
Figure 7l illustrates Bender’s layout. Observe that the nodes
in the top 2 levels are arranged next to each other, indicating
a cut height of 2 at the outermost branch of the recursion. In
our nomenclature, BENDER is Ph−2dlog2(h/2)e

∞ (see Table I).

We will see later that Hierarchical Layouts also include
all the simple and commonly used layouts such as in-order,
pre-order, and breadth-first. One can think of cut heights
g = 1 and g = h − 1 as the extreme cases, corresponding to
these simple layouts. We will also show that cache-oblivious
layouts are obtained by cutting the tree near the center, with
g approximately equal to h/2.

A. Evaluating layouts using block transitions

To compare Hierarchical Layouts, we will estimate the
number of cache misses for a particular cache block size and
layout as follows. Consider a cache consisting of a single block
that can hold N data elements, and which is backed by a larger
memory consisting of several such blocks. (In practice caches
tend to hold more than one block, but that would unnecessarily
complicate our derivation.) Let i and j be data elements stored
in blocks B(i) and B(j), respectively, and let `ij denote the
difference in position of i and j on linear storage. For ease of
exposition, we set `ij = `. Suppose i is accessed first, bringing
B(i) into the cache. We wish to estimate the probability of
a cache miss when j is accessed next. Clearly, if ` ≥ N ,
then a cache miss is inevitable, since then i and j are stored
in different blocks. When ` < N , the likelihood of a cache
miss depends on the positions of i and j within their blocks.
In absence of further information, we will assume that the
position of i within B(i) is distributed uniformly, and similarly
for j. (Even in practice, modern operating systems allocate
memory blocks with nearly arbitrary alignment.) Hence, there
are ` out of N possible alignments that separate i and j into
different blocks, and the probability of a cache miss occurring
when j is accessed is therefore

MN (`) =

{
`
N if ` ≤ N
1 otherwise

(1)

To represent a particular access pattern on the data, we use
the notion of an affinity graph, as in [11], [14]. We model
the data elements as nodes V in a graph G(V,E), with an
undirected edge indicating a nonzero likelihood that its two
nodes be accessed in succession. The affinity between i and j
may be expressed in terms of a weight wij = wji > 0. Let A
denote the matrix of affinities, such that aij = wij if ij ∈ E
and aij = 0 otherwise. We model data accesses as a Markov
chain random walk on G with transition matrix P = D−1A,
where D is the diagonal matrix with dii =

∑
j aij . If G is

strongly connected, as is the case for binary trees, then it is
well-known that the probability Pr(Xt = i,Xt+1 = j) of
being in state i and transitioning to state j equals wij

W , where
W =

∑
ij∈E wij . In other words, the probability of accessing

two data elements in succession is proportional to the weight
of the edge connecting them.

PRE-VEB PRE-VEBA IN-VEB IN-VEBA HALFWEP MINWEP

1 4 16 64 256 1K 4K 16K 64K 256K 1M
1%

10%

100%

b
lo

ck
 t

ra
n

si
ti

o
n

s

block size

1 4 16 64 256 1K 4K 16K 64K 256K 1M
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

w
e

ig
h

te
d

 c
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

edge length

Fig. 3: Two locality measures for several layouts of a tree of height h = 20. Left: Block transitions β as a function block size (lower is better). Right: Cumulative
distribution of edge weights as a function of edge length (higher is better).

In a binary search tree T , the affinity graph is the search
tree itself, and the search for a particular element results in
a walk from the root on level d = 0 of the tree to the node
representing the element. Therefore, only the node searched
for and its ancestors are visited, beginning with the root, and
thus nodes near the top of the tree are more likely to be visited
than nodes near the bottom. Assuming each node is equally
likely to be searched for, the likelihood of traversing a given
edge between levels d− 1 and d in a tree of height h is

pd,h =
Vh−d
Vh

=
2h−d − 1

2h − 1
, (2)

where Vh is the number of nodes in a complete binary tree of
height h. For an edge ij between levels d − 1 and d, we set
wij = pd,h, which ensures that the probability of accessing
two data elements in succession is proportional to the weight
of the edge connecting them.

Given this probability of accessing any two nodes in
succession, the expected fraction of consecutive accesses that
will result in a cache miss for a particular block size N is

β(N) =
1

W

∑
ij∈E

wijMN (`ij) (3)

For any given layout and block size, we refer to β as the
Percentage of Block Transitions. If one layout dominates
another for all block sizes under this metric, then clearly it
will result in a better cache-oblivious layout.

B. In-order Hierarchical Layouts

Consider the in-order van Emde Boas layout, denoted as
IN-VEB, that arranges all bottom subtrees in-order and in the
same relative order as that of their parent leaves LA. In
our nomenclature, IN-VEB is Ibh/2c1 (see Table I). Figure 7e
illustrates IN-VEB for a tree of height 6. Observe that at each
branch of the recursion, the top subtree is arranged in-order.
For instance, the nodes on the top three levels are ordered in the
middle of the layout, from positions 29 to 35. To compare IN-
VEB with the pre-order van Emde Boas layout that arranges

all subtrees pre-order (PRE-VEB), we consider the percentage
of block transitions β.

Figure 3(left) plots β for PRE-VEB and IN-VEB as a
function of block size for a tree of height 20. We see that IN-
VEB dominates PRE-VEB for every block size. Interestingly,
at very large block sizes, IN-VEB is much better than PRE-
VEB. We have observed the same dominance for trees of other
heights. In fact, for large block sizes, IN-VEB compares well
with MINWEP, which we introduce later as the optimal cache-
oblivious Recursive Layout for binary search trees. Looking
at the weighted cumulative distribution, which measures the
total weight of all edges up to a certain length, we see
the same dominance. Again, we observe that IN-VEB is
indistinguishable from MINWEP for large edge lengths.

Figure 4(bottom left) plots β for IN-VEB and PRE-VEB as
a function of tree height for a block size of 2, 5, and 16 nodes.
With 4-byte nodes, a block size of 16 nodes mimics a cache
line size of 64 bytes. We see that IN-VEB dominates PRE-
VEB for all tree heights, but is dominated by MINWEP. In our
experiments, we observed similar results for other block sizes.
We observe the same relative dominance (between MINWEP,
IN-VEB, and PRE-VEB) in L1 and L2 cache miss rates in
Figure 4(bottom right). Interestingly, MINWEP results in even
fewer L1 cache misses than the number of L2 cache misses for
PRE-VEB, suggesting that MINWEP is a significantly better
layout than PRE-VEB, the suggested layout in the literature.

The true measure of any of these layouts is the average
time taken to find any node in the search tree (see Section V-F
for more details on the experimental setup). To ensure that
the wall clock search time is not affected by the time taken
to compute the position of a node in the layout, we store two
child “pointers” with each node. For this reason, we also refer
to the search time as explicit, or pointer-based search time.
Illustrated in Figure 4(top right), we see the same behavior
as before. IN-VEB is significantly better than PRE-VEB, but
is marginally worse than MINWEP. On average, MINWEP
is about 5% better than IN-VEB and almost 20% better than
PRE-VEB. The sudden uptick at h = 32 is due to NUMA

PRE-VEB PRE-VEBA IN-VEB IN-VEBA HALFWEP MINWEP

1

2

3

4

5

6

7

8

9

10

11

12

13

4 8 12 16 20 24 28 32

w
e

ig
h

te
d

 e
d

ge
 p

ro
d

u
ct

tree height

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 20 24 28 32

m
e

an
 s

e
ar

ch
 t

im
e

 (
m

ic
ro

se
co

n
d

s)

tree height

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12 16 20 24 28 32

b
lo

ck
 t

ra
n

si
ti

o
n

s

tree height

N = 5

N = 16

N = 2

0%

5%

10%

15%

20%

25%

30%

35%

40%

16 20 24 28

ca
ch

e
 m

is
s

ra
te

tree height

L2

L1

Fig. 4: Performance metrics as a function of tree height for several hierarchical layouts. Top left: Weighted edge length product ν0. Top right: Wall clock search
time. Bottom left: Block transitions for blocks of N ∈ {2, 5, 16} nodes. Bottom right: L1 and L2 cache miss rate.

misses. Our experiments were run on a machine with two
memory banks of 48 GB each, and we need 64 GB of RAM to
store a tree of height h = 32, generating a lot of traffic across
the NUMA memory banks. The plots in Figure 4(bottom)
therefore indicate that the percentage of block transitions (β)
correlates very well with cache miss ratios, and is therefore a
good indicator of the quality of a layout. In Section IV, we
mathematically derive a new locality measure, the Weighted
Edge Product ν0, which is independent of the block size N and
correlates even better with these measures and performance
metrics. In Figure 4(top left), we see that IN-VEB has much
lower ν0 values than PRE-VEB, but not as low as MINWEP.

IV. A CACHE-OBLIVIOUS LOCALITY MEASURE

We have seen how the percentage of block transitions
provides a quality measure for a layout given a particular cache
block size N . We now remove this dependence on block size
and derive a simple measure of locality for graph orderings in
a cache-oblivious sense, i.e. with no knowledge of cache and
line size. Continuing the discussion in Section III-A, we here
generalize the measure presented in [14] to weighted graphs.

The observation underlying our cache-oblivious measure
is that most block-based caches employed in current computer
architectures are hierarchical and nested, with a roughly ge-
ometric progression in size. That is, we may write N = bk

for some base b (usually b = 2) and positive integer k. We
then estimate the total number of cache misses for all k for a
particular edge length ` as

M(`) =

∞∑
k=1

Mbk(`) =

blogb `c∑
k=1

1 +

∞∑
k=blogb `c+1

`

bk

= blogb `c+ `
b−blogb `c

b− 1

(4)

We note that when ` is an exact power of b, M(`) simplifies
to logb `+

1
b−1 ; otherwise M(`) increases monotonically with

`. Our primary goal is not to estimate the exact number of
cache misses incurred, but rather to assign a relative “cost” as
a function of edge length `. We may thus ignore the value of
b (since it affects only the slope of M) and the constant term
independent of `, and arrive at the approximation

M(`) ≈ log ` (5)

Intuitively, log `ij measures the number of blocks smaller
than `ij that cannot hold both i and j, and thus captures
the expected number of block transitions and cache misses
associated with `ij in a memory hierarchy.

Finally, if we consider all edges E of the graph, then

M =

∞∑
k=1

β(bk) =

∞∑
k=1

1

W

∑
ij∈E

wijMbk(`ij)

=
1

W

∑
ij∈E

wij

∞∑
k=1

Mbk(`ij) =
1

W

∑
ij∈E

wijM(`ij)

≈ 1

W

∑
ij∈E

wij log `ij = log ν0

(6)

gives the average cache miss ratio, where ν0 denotes the
weighted edge product functional

ν0 = exp

(
1

W

∑
ij∈E

wij log `ij

)
=

(∏
ij∈E

`
wij

ij

)1/W

(7)

for a weighted graph. In other words, ν0 ≈ exp(M). As a
result, low values of ν0 imply good cache utilization across
the whole memory hierarchy. As we shall see, this expected
behavior is observed also in practice, with layouts optimized
for ν0 having excellent locality properties. (In the unweighted
case, wij = 1 and W = |E|. We denote the unweighted
version of ν0 by µ0.) We call the Recursive Layout that
minimizes ν0 (for the weights described in Section III-A) the
MINWEP (short for minimum weighted edge product) layout.

A. Other edge-based locality measures

It is important to mention two other locality measures that
have been considered in the literature: the average edge length,
µ1, and the maximum edge length, µ∞. The small example
in Figure 7 includes the layouts MINLA [15] in Figure 7m,
which minimizes µ1, and MINBW [16] in Figure 7n, which
minimizes µ∞. Similar to ν0, which measures the weighted
edge length product, we may define the average weighted edge
length ν1. This figure also presents these four statistics (ν0, ν1,
µ1, µ∞) for all layouts discussed in this paper.

Our experiments on block transitions (Figure 5), observed
cache misses, and timings indicate that these other layouts
(MINLA, MINBW) have significantly worse locality than
MINWEP, lending support to our claim that the weighted edge
product (represented by ν0) is the correct measure to consider.

Continuing the discussion in Section III-A, observe that for
block sizes larger than the number of elements in the binary
tree, MN (`) reduces to `

N , a linear function of the edge length
`. This implies that the probability of a cache miss β(N)
reduces to 1

WN

∑
ij∈E wij`ij , a weighted sum of the edge

lengths. Thus, for very large block sizes, the optimal ordering
is one that minimizes ν1 This is confirmed by Figure 5, where
we see that MINWLA, a layout that minimizes ν1, performs
as well as MINWEP for large block sizes.

Based on an empirical study, we conjecture that among all
Recursive Layouts ν1 is minimized by any layout that arranges
the outermost top subtree in-order and all other subtrees pre-
order, irrespective of the cut height. In our nomenclature, these
layouts are denoted by I∗∞, where ∗ is a wild-card.

1 4 16 64 256 1K 4K 16K 64K 256K 1M
1%

10%

100%

b
lo

ck
 t

ra
n

si
ti

o
n

s

block size

MINBW MINLA MINWLA MINWEP

Fig. 5: Block transitions in a tree of height 20 for the layouts that minimize
µ∞ (BW), µ1 (LA), ν1 (WLA), ν0 (WEP).

Consider I1∞, the I∗∞ layout with cut height g = 1, which
we denote as MINWLA (see Table I). Restricting ourselves to
Recursive Layouts with cut height g = 1, MINWLA provably
minimizes ν1. We delegate all proofs to the extended version
[17]. All proofs involving Recursive Layouts with cut height
g = 1 were proved by induction on the height of the tree.

Theorem 1. Among all Recursive Layouts with cut height g =
1, the MINWLA layout minimizes µ1, ν1, and the average
weighted edge length for all other weight distributions where
the weight does not increase as we go down the tree.

In this paper, we present a succession of Hierarchical Lay-
outs that reduce ν0, and we see that these also tend to reduce
ν1, µ1, and µ∞, suggesting that these might be good layouts
in other settings that benefit from better locality. In [18],
the authors show that minimizing ν0 results in compression-
friendly layouts. We note that minimizing ν0 is likely to result
in high locality layouts for all graphs, and not just trees.
For algorithms designed to minimize µ0, ν0, µ1, and µ∞,
respectively, on general graphs, see [14], [18], [19], and [20].

V. MINIMIZING THE WEIGHTED EDGE PRODUCT

We have shown that layouts with lower Weighted Edge
Product ν0 result in fewer block transitions (measured by β).
So far, we have presented IN-VEB, with lower ν0 values than
PRE-VEB. Section V-A shows that ν0 can be further reduced
by alternating layouts. Ultimately, the goal is to find the
Hierarchical Layout that minimizes ν0 – the MINWEP layout.

A. Ordering the subtrees: Alternating Hierarchical Layouts

In the discussion so far, we have not yet determined the
optimal relative ordering of the bottom subtrees – we have
prescribed it to be in the order of the top subtree leaves. A
simple way to reduce ν0 is to reduce the product of edge
lengths among all edges that have the same weight, without
modifying the lengths of all other edges. If we consider the
Hierarchical Layout at a particular branch of the recursion, all
the edges between the top subtree and the bottom subtrees have
the same weight. By considering such equal-weight edges, the

next result proves that a layout that orders the bottom subtrees
in the reverse order of the parent leaves reduces ν0. In such a
layout, the order of the nodes appears to alternate between left-
to-right and right-to-left. As a result, we refer to Hierarchical
Layouts that arrange the bottom subtrees in the reverse order
of the parent leaves as alternating Hierarchical Layouts.

Theorem 2. For any subtree in a particular branch of the
recursion, suppose we fix the internal ordering of the leaves
of the top subtree A and the arrangement of all the bottom
subtrees in subsequent branches of the recursion. Then, the
product of all the edge lengths between the top subtree and the
bottom subtrees is minimized by ordering the bottom subtrees
in reverse order of that of the parent leaves LA.

As a corollary of Theorem 2, we see that when the cut
height g > 1, the optimal relative ordering of bottom subtrees
is one that positions both the bottom subtrees of a particular
parent leaf in LA adjacent to each other. This suggests that the
initial orderings (PRE-VEB and IN-VEB) got the adjacency of
the bottom subtrees right – they only had the order wrong.

By recursive application of Theorem 2, we order the bottom
subtrees in the reverse ordering of the parent leaves LA at
each level of recursion, converting any Hierarchical Layout
to its alternating version, thus reducing ν0. We denote the
alternating version of IN-VEB by IN-VEBA, and define PRE-
VEBA similarly. In our nomenclature, these two layouts are
Ĩbh/2c1 and P̃bh/2c∞ , respectively (see Table I).

Figure 7c illustrates IN-VEBA for a tree of height 6.
Observe that the bottom subtrees are arranged in reverse
order of their parent leaves. In the outermost branch of the
recursion, the rightmost two leaves in the top subtree are
arranged at positions 35 and 33, and the corresponding child
subtrees are rooted at positions 39, 46, 53, and 60. That is,
the child subtrees are arranged in reverse order of the parent
leaves (39 and 46 connected to 35), compared to IN-VEB
(see Figure 7e, where 39 and 46 are connected to 33). We
see that by alternating, the sum of edge lengths between top
and bottom subtrees remains the same, but we have increased
their variance, thus reducing their product and consequently
ν0. A similar argument holds for alternating pre-order trees
(see Figure 7d and Figure 7f).

It is important to mention that alternating a particular
layout has no effect on ν1. However, since the variance of the
edge lengths is increased, alternating a layout will increase µ∞,
and may increase the number of unit-length edges. Since ν0
is a function of the product of the edge lengths, the Weighted
Edge Product is reduced. As an example, we can see the effect
of alternating a layout on ν0, ν1, and µ∞ by comparing IN-
VEBA (Figure 7c) and IN-VEB (Figure 7e).

Figure 4(top left) shows that PRE-VEBA has smaller ν0
values than PRE-VEB, but this improvement is not as drastic
as the improvement from PRE-VEB to IN-VEB. A natural
question to ask is: Does an ordering that reduces ν0 result in
better cache-oblivious layouts? And if so, do we get a greater
improvement from PRE-VEB to IN-VEB, as predicted by the
ν0 values? We first look to block transition percentages (β)
to show that alternating layouts are better. Figure 3(left) plots
β for PRE-VEBA and IN-VEBA as a function of block size
for a tree of height 20. We see that IN-VEBA is virtually in-

distinguishable from IN-VEB, whereas PRE-VEBA dominates
PRE-VEB for small block sizes. Figure 4(bottom left) also
plots β for PRE-VEBA and IN-VEBA as a function of tree
height for a variety of block sizes. Again, we see that IN-
VEBA is virtually indistinguishable from IN-VEB, but PRE-
VEBA dominates PRE-VEB for all tree heights. And we see
the same pattern with cache miss rate. Figure 4(top right) also
plots the explicit search time for IN-VEBA and PRE-VEBA.
Comparing with IN-VEB and PRE-VEB, we see the exact
same pattern. IN-VEB and IN-VEBA are indistinguishable
from each other, with approximately 5% worse explicit search
times than MINWEP. On the other hand, PRE-VEBA is about
5% better than PRE-VEB.

From these experiments, we see that the improvement from
PRE-VEB to PRE-VEBA is far less than the improvement from
PRE-VEB to IN-VEB. This suggests that while an alternating
version always improves the layout (we restrict our attention
to alternating layouts for the rest of this paper), it is far more
important to switch from pre-order to in-order. One should
consider this the main take-home message of this paper: All
data structures that use a pre-order Hierarchical Layout should,
at the very least, switch to an in-order version of the same
Hierarchical Layout. Later, in Section V-C, we will see that
this result may depend on the cut height, but not for the cut
heights bh/2c that have been used in practice.

B. Constructing hybrid layouts: The HALFWEP layout

We now analyze the impact of varying the position of the
top subtree A relative to all the bottom subtrees. Recursive
Layouts restrict us to the two extremes represented by PRE-
VEBA and IN-VEBA, wherein A is positioned either at one end
or in the middle of all the bottom subtrees. However, IN-VEBA
and PRE-VEBA arrange all bottom subtrees identically, either
in-order or pre-order, respectively. We can consider many more
permutations by ordering some of the bottom subtrees in-order
and others pre-order. As before, the locality measure ν0 guides
us in these decisions. Clearly, IN-VEBA results in smaller
ν0 than PRE-VEBA. Can a hybrid layout (by modifying IN-
VEBA, possibly) reduce ν0 even further?

To construct a hybrid layout, we must take into account the
trade-offs involved. First, observe that any bottom subtree is
arranged in a contiguous block in memory, and has only one
edge connecting it to the rest of the tree – the edge from its root
to a leaf in the top subtree. Therefore, rearranging any bottom
subtree potentially results in two changes to its contribution
to ν0: the length of the edge connecting its root to its parent,
and the lengths of the edges in the subtree itself. Discounting
the connection to the top subtree, a bottom subtree ordered as
in PRE-VEBA has a larger Weighted Edge Product than when
it is ordered as in IN-VEBA. However, the root of a pre-order
bottom subtree is closer to its parent than the root of an in-
order bottom subtree, and the weight of this edge is larger than
the weight of any edge within the bottom subtree. So there are
potential benefits to modifying IN-VEBA by arranging some
of the bottom subtrees pre-order. This nevertheless raises the
question: Which bottom subtrees should we modify, if any?
Also, observe that the in-order bottom subtrees are identical,
and differ only in their distance to their parent leaf in the
top subtree, and similarly for the pre-order trees. As we move
further away from the top subtree, the proportional reduction in

the length ` of the edge connecting the subtrees decreases (i.e.
the slope of log ` approaches zero), whereas the degradation
in the ν0 value of the bottom subtree remains the same. As a
result, the marginal benefit of converting an in-order bottom
subtree into a pre-order bottom subtree decreases. Therefore,
if arranging any bottom subtree in-order results in lower ν0
than arranging it pre-order, then this must also be true for all
bottom subtrees further away from the top subtree.

To find the best layout, we undertook a detailed empirical
study that evaluated all Recursive Layouts for trees up to
height 20. We considered all possible cut heights g ≤ bh/2c
(we quickly determined that larger g were not beneficial). We
calculated ν0 for every layout for each tree height. We noticed
that the optimal ordering always arranged the bottom subtrees
closest to the top subtree pre-order, arranged all other bottom
subtrees in-order, and used an in-order arrangement for the
outermost branch of the recursion. In comparison, IN-VEBA
arranges all bottom subtrees in-order, and PRE-VEBA arranges
all of them pre-order. We give the version of this layout with
cut height g = bh/2c the special name HALFWEP. In our
nomenclature, HALFWEP is Ĩbh/2c2 (see Table I).

Figure 6(top) shows that HALFWEP and MINWEP have
almost indistinguishable values of ν0 and performance in
explicit search times, further validating ν0 as the appropriate
locality measure for deriving cache-oblivious layouts.

Figure 7a illustrates HALFWEP for a tree of height 6.
Observe that the bottom subtrees closest to the top subtree are
arranged pre-order. At the outermost branch of the recursion,
the subtrees rooted at positions 28 and 36 are arranged pre-
order in HALFWEP. These are arranged in-order in IN-VEBA
(see Figure 7c). From the thickness of the edges, one can
see that HALFWEP reduces some edge lengths for every
branch of the recursion by replacing some in-order bottom
subtrees by pre-order bottom subtrees. This does increase some
distances within the bottom subtree (the next recursive branch),
but deeper down the tree, where they contribute less to the
Weighted Edge Product. This is confirmed by the ν0 values
for HALFWEP (1.863) and IN-VEBA (2.322).

Our empirical analysis is also backed by theory, when
restricted to certain cut heights. In Theorem 3, we show that
when the cuts are made at the top of the tree (g = 1) at all
branches of the recursion, this HALFWEP-like layout provably
minimizes ν0. We refer to this layout as the MINEP layout,
because it also minimizes the edge product µ0 for unweighted
trees. In our nomenclature, MINEP is I12 (see Table I).

Theorem 3. The MINEP layout minimizes ν0 among all
Recursive Layouts with cut height g = 1.

C. Optimizing the cut height: The MINWEP layout

In the discussion so far, we have ignored the effect of
the cut height by restricting ourselves to the case where
g = bh/2c. Before we find the optimal cut height, we describe
other layouts that turn out to be part of the Hierarchical Layout
framework, albeit with extreme cut height values.

Consider cut height g = 1. Analogous to how HALFWEP
is a hybrid of IN-VEBA and PRE-VEBA, one can think of
MINEP as a hybrid of two other simple layouts: the common
IN-ORDER and PRE-ORDER depth-first layouts. All three are

Hierarchical Layouts that cut every subtree at height g = 1,
but differ in how the bottom subtrees are arranged. IN-ORDER
arranges all subtrees in-order, and PRE-ORDER arranges all
subtrees pre-order. In our nomenclature, IN-ORDER is I11 and
PRE-ORDER is P1

∞ (see Table I). Observe that when the cut
height g = 1, there is only one leaf node in LA at every branch
of the recursion, and therefore the notion of alternating layouts
is not relevant. Furthermore, there are only 2 bottom subtrees
at each branch of the recursion, and therefore in-order and pre-
order are the only two options for positioning the top subtree.
As a result, all Hierarchical Layouts that are described using
cut height g = 1 at all branches of the recursion are in fact
Recursive Layouts. This is not true for other cut heights.

Figure 7g illustrates IN-ORDER for a tree of height 6.
Observe that IN-ORDER arranges the two bottom subtrees at
the outermost recursion in-order, resulting in their roots being
placed at positions 16 and 48. These roots are arranged pre-
order at positions 31 and 33 in MINEP (see Figure 7b). On the
other hand, PRE-ORDER (see Figure 7h) arranges all subtrees
pre-order. The roots of the same bottom subtrees are arranged
pre-order at positions 2 and 33. Observe that IN-ORDER and
PRE-ORDER have (nearly exactly) the same number of short
edge lengths (counting the number of thick lines), but these
are at the bottom of the tree for in-order, where the weights
are much smaller. This results in much larger ν0 values for
IN-ORDER (4.854), when compared to PRE-ORDER (3.116).

At the other end of the spectrum in terms of cut height
is g = h − 1, where each subtree is cut one level above the
bottom. It turns out that the Hierarchical Layout with g = h−1
that arranges all subtrees pre-order (similar to PRE-VEB with
cut height g = bh/2c) is the simple and commonly used
breadth-first order. For this reason, we denote the breadth-
first layout as PRE-BREADTH. Figure 7j illustrates the PRE-
BREADTH layout for a tree of height 6. Observe that the
nodes are arranged by level. Furthermore, one can now also
consider in-order and/or alternating variants on the breadth-
first ordering. We denote the in-order variant by IN-BREADTH.
Observe that when g = h− 1, the bottom subtrees are single
nodes, and therefore the notion of their arrangement into pre-
or in-order is not relevant. In our nomenclature, IN-BREADTH
is Ih−1∗ and PRE-BREADTH is Ph−1

∗ (see Table I).

In our detailed empirical analysis, which suggested that
ν0 is minimized by layouts that fit the characterization Ĩ∗2
in our nomenclature, we noticed that the optimal cut height
(denoted by opt) is different from HALFWEP for pre-order
subtrees: goptP (h) = max{1, b(h−1)/2c}, resulting in different
cut heights for pre-order subtrees whose height h is an even
number greater than 2. For in-order subtrees, it is the same as
before, i.e., goptI (h) = bh/2c. We also noticed one exception
to the above rule, with goptI (13) = 7, and correspondingly
goptP (12) = 6. However, ignoring this exception had a indis-
tinguishable effect on ν0 or performance, and for this reason
we do not include the exception in the definition of MINWEP.

Based on these experiments, we define MINWEP as the
HALFWEP-like layout with the cut heights presented above.
In our nomenclature, MINWEP is Ĩopt2 (see Table I). For
trees of height h ≤ 6, MINWEP is identical to HALFWEP
(see Figure 7a). This is because such trees have no pre-order
subtrees of heights that are even numbers greater than 2.

PRE-BREADTH IN-BREADTH PRE-ORDER IN-ORDER MINEP BENDER PRE-VEB IN-VEB HALFWEP MINWEP

1

2

3

4

5

6

7

8

9

10

11

12

13

4 8 12 16 20 24 28 32

w
e

ig
h

te
d

 e
d

ge
 p

ro
d

u
ct

tree height

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 20 24 28 32

m
e

an
 s

e
ar

ch
 t

im
e

 (
m

ic
ro

se
co

n
d

s)

tree height

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 20 24 28 32

m
e

an
 s

e
ar

ch
 t

im
e

 (
m

ic
ro

se
co

n
d

s)

tree height

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 20 24 28 32

m
e

an
 s

e
ar

ch
 t

im
e

 (
m

ic
ro

se
co

n
d

s)

tree height

Fig. 6: Performance metrics as a function of tree height for several layouts. Top left: Weighted edge length product ν0. Top right: Pointer-based search time.
Bottom left: Pointer-less search time excluding all memory accesses. Bottom right: Pointer-less search time.

Observe that the cut height for an in-order subtree can be
calculated directly from the pre-order cut height as follows:
goptI (h) = 1 if h = 2, and goptP (h−1)+1 otherwise. Analyzing
Hierarchical Layouts where the closest bottom subtree is
arranged pre-order and the cut heights are chosen such that
gI(h) = gP (h−1)+1, we see that cutting all in-order subtrees
at height gI(h) = 1 instead results in the same layout. This
is because this in-order cut results in two pre-order bottom
subtrees of height h − 1, each of which will subsequently be
cut at the same height as they would have been when part of an
in-order subtree of height h. Since the closest bottom subtree
is pre-order in either case, the layouts are identical. As a result,
we can set goptI (h) = 1. As we shall see later, this is important
since it simplifies the index computation for pointer-less trees.
Note that this optimization cannot be applied to HALFWEP.

D. The cost of cache misses: Explicit pointer-based searches

We observed earlier that HALFWEP and MINWEP are
virtually indistinguishable in terms of explicit search time. This
is because they are exactly the same ordering schemes, but with
very slightly different cut heights. Larger differences in cut

heights can make a significant difference. Consider the values
of ν0 in Figure 6(top left) for many of the layouts presented
so far. Recall that BENDER and PRE-VEB differ from each
other only in the choice of the cut height g. For BENDER, the
cut height g = h − 2dlog2(h/2)e, which is identical to PRE-
VEB (g = bh/2c) only for subtree heights that are a power of
two. As expected, we see identical values of ν0 for BENDER
and PRE-VEB for trees of height 4, 8, 16, and 32. However,
for all other tree heights, BENDER gives higher values for
ν0; sometimes 20% worse. This manifests itself in similarly
worse pointer-based search times compared to PRE-VEB. This
suggests that for a particular ordering scheme, the optimal cut
height is closer to halfway down the tree.

Cut heights g = 1 and g = h − 1 illustrate this further.
MINEP, which is identical to MINWEP except in its choice
of the cut height (g = 1), results in significantly different trees
(especially for larger tree heights), and we observe a steep
divergence in ν0 as the tree height increases. As expected,
MINEP’s performance (measured using pointer-based search
times) also degrades significantly for large tree heights. At
the other end of the spectrum, consider PRE-BREADTH and

IN-BREADTH, which are identical to PRE-VEB and IN-VEB,
respectively, except in the choice of cut height. A cut height of
g = h − 1 results in significantly different layouts, especially
for large tree heights. Even for the small example in Figure 7,
we see that PRE-BREADTH is quite different from PRE-VEB.
In Figure 6(top right), we see that the pointer-based search time
is significantly worse for breadth-first layouts, when compared
to PRE-VEB and IN-VEB.

From the ν0 values in Figure 6(top left), we also observe
that in-order is not always better than pre-order. For a cut
height of g = 1, PRE-ORDER results in much smaller ν0
values than IN-ORDER. The example in Figure 7 suggests why:
All the short edges in IN-ORDER are near the bottom of the
tree, where the contribution to ν0 is minimal. However, this
behavior changes as we increase the cut height, and at some
point, in-order layouts are better than pre-order layouts. When
the cut is approximately near halfway down the tree, in-order
layouts such as IN-VEB result in much smaller ν0 values than
pre-order layouts such as PRE-VEB. As we increase the cut
height all the way to g = h− 1, we observe that the in-order
version of the breadth-first layout IN-BREADTH continues to
be better than the pre-order version PRE-BREADTH.

E. The computational cost of layouts: Pointer-less searches

Based on explicit pointer-based search times, we have
shown that MINWEP is a cache-oblivious layout with almost
20% improvement in performance when compared to the
best in the literature, represented by PRE-VEB. However,
MINWEP is a more complex layout than PRE-VEB. The
natural question therefore is: If we considered implicit, pointer-
less search times, would MINWEP still compare favorably
with PRE-VEB? In [5], the authors showed that for small tree
heights, even layouts that have poor cache-performance such
as IN-ORDER and PRE-BREADTH perform better than PRE-
VEB in implicit search, simply because it is trivial to compute
the position of a node in such layouts.

To understand the trade-offs involved, we first measured the
time taken to compute the index of child nodes in a pointer-
less search by excluding all memory accesses.1 Listing 1 lists
the code that takes the PRE-BREADTH index for a node and
computes its corresponding MINWEP index. This code needs
to be executed for every transition in the search tree. Here the
depth (level) d = blog2 ic of the node is maintained together
with i along the search path from the root.

In Figure 6(bottom left), we see that the index computa-
tion time is almost constant for simple layouts (IN-ORDER,
PRE-ORDER, IN-BREADTH, and PRE-BREADTH). The slow
increase merely stems from the longer search paths as the
height of the tree is increased. Furthermore, MINWEP’s index
computation time is usually 4 times that of the simple layouts.
Comparing MINWEP with the van Emde Boas layouts (IN-
VEB, PRE-VEB, BENDER, HALFWEP) is more interesting.
Not surprisingly, HALFWEP performs worse than IN-VEB on
this metric (around 20% worse), since it is a more complex lay-
out. Observe that PRE-VEB performs better than IN-VEB by
almost 50%. It turns out that the index can be computed more
quickly within a pre-order subtree, since one does not need

1We achieved this by storing the keys {1, . . . , |V |} in the tree, allowing
them to be easily inferred without lookup via their in-order index.

to keep track of left and right, and also because some other
optimizations unique to pre-order layouts can be performed.
This observation is key, since it allows us to compute the
index for MINWEP in 30% less time than HALFWEP. This
is because we can set goptI (h) = 1, as shown in Section V-C,
reducing the computational burden significantly by converting
any in-order computation to a pre-order computation. As a
result of this optimization, mean index computation times for
MINWEP are also about 20% less than those of IN-VEB.
Finally, observe that index computations take 60% more time
in BENDER compared to PRE-VEB, because of the additional
time spent computing BENDER’s complex cut heights.

Figure 6(bottom right) also presents our results on implicit,
pointer-less search times. One can think of these as a combi-
nation of the index computation times (which do not include
memory accesses) and explicit search times (which include
memory accesses, but avoid index computations using point-
ers). We see that for the more complex layouts, the implicit
search times correlate very well with the index computation
times. This is because of the relatively fast memory access
times; if we added disk or even flash to the memory hierarchy,
we would expect the relative order among the implicit times to
be similar to the explicit times. The only perceptible difference
in our experiments is that the pre-order layouts (PRE-VEB and
BENDER) perform slightly worse, since they perform almost
20% worse on the explicit search times. Among the simpler
layouts, the implicit search times diverge significantly from
the index computation times due to their poor memory access
patterns. For tress of height 28, IN-ORDER already performs
worse than PRE-VEB, and we expect all of the simpler layouts
to perform worse than MINWEP as the height of the tree
increases beyond 32.

F. Experimental Setup

Our experiments were run on a single core of a dual-socket
6-core 2.80 GHz Intel Xeon X5660 (Westmere-EP) processor
with 96 GB of 3x DDR3-1333 RAM split over two 48 GB
NUMA memory banks, 12 MB 16-way per-socket shared L3
cache, 256 KB 8-way L2 cache, and 32 KB 8-way L1 data
cache. All three caches use 64-byte cache lines. To reduce
noise in the timing measurements, we computed the median
time of 15 runs. Each run searches for (up to) 10 million
nodes, selected randomly. We counted the number of L1 and
L2 cache misses incurred in memory accesses to the binary
tree (stored as a linear array) using valgrind-3.5.0. We
also repeated our experiments on different architectures, from
powerful workstations to laptops, and observed similar results.

VI. CONCLUSIONS

In this paper, we present MINWEP, a new layout for
cache-oblivious search trees that outperforms layouts used
in the literature by almost 20%. Using a general framework
of Hierarchical Layouts, we show that MINWEP minimizes
a new locality measure ν0 (representing the Weighted Edge
Product) that correlates very well with cache misses in a multi-
level cache hierarchy. All widely used cache-oblivious versions
of search trees rely on van Emde Boas layouts, which are
shown to be a special case of Hierarchical Layouts. Therefore,
the performance of all these data structures can be easily
improved by switching to layouts derived from MINWEP.

Cut height g Pre-order layouts Hybrid layouts In-order layouts
P∞ I∞ I2 I1

Depth-first 1 PRE-ORDER (P1
∞) MINWLA (I1∞) MINEP (I12) IN-ORDER (I11)

Other BENDER (Ph−2dlog2(h/2)e
∞) MINWEP (Ĩopt2)

van Emde Boas bh/2c PRE-VEB (Pbh/2c
∞) IN-VEB (Ibh/2c

1)
PRE-VEBA (P̃bh/2c

∞) HALFWEP (Ĩbh/2c
2) IN-VEBA (Ĩbh/2c

1)
Breadth-first h− 1 PRE-BREADTH (Ph−1

∗) IN-BREADTH (Ih−1
∗)

TABLE I: Nomenclature for Hierarchical Layouts. The table summarizes the layouts discussed in the text, organized by cut height (rows) and subtree ordering
(columns). The cut height function gopt for MINWEP is described in Section V-C. The wild-card ∗ indicates that a particular parameter is not relevant.

uint index(uint i, uint d, uint h) { // BF index i, node depth d, tree height h
uint p = 1 << --h; // MinWEP index being computed
while (d) { // iterate until node is root of subtree

uint q = (i >> --d) & 1; // initial offset (pre: q=1; post: q=0)
uint r = q - 1; // bit reversal (pre: r=0; post: r=˜0)
i ˆ= r; // post-order is reversal of pre-order
while (d) { // iterate until node is root of subtree

uint g = max(1, (h - 1) / 2); // top subtree height
if (d < g) { // is node in top subtree?

h = g; // set height to top subtree height
i = ˜i; // alternate left/right ordering

} else { // node is in bottom subtree
h -= g; // bottom subtree height
d -= g; // depth within bottom subtree
uint m = (1 << g) - 1; // number of nodes in top subtree
q += m; // advance past top subtree
uint k = (i >> d) & m; // subtree number (pre: k=0; in: 1<=k<=m)
if (k) { // in in-order subtree?

q += (k << h) - k; // advance past k bottom subtrees
q += (1 << --h) - 1; // advance to root of in-order subtree
break; // transition to in-order case

} } }
i ˆ= r; // restore i if post-order
q ˆ= r; // negate offset if post-order
p += q; // advance to smaller in-order subtree

}
return p; // return MinWEP index

}

Listing 1: Breadth-first to MINWEP index translation.

While enumerating all possible orderings for small trees,
we noticed that the optimal ν0 value is sometimes obtained
by layouts that do not place the top subtree at one end or in
the middle of the bottom subtrees. This implies that Recursive
Layouts do not necessarily optimize ν0. One direction of future
study is to generalize the notion of Recursive Layouts to in-
clude such Hierarchical Layouts, and to construct unrestricted
layouts that optimize ν0. We would also like to prove that,
at least among all Recursive Layouts, MINEP and MINWEP
minimize µ0 and ν0, respectively, since we believe this is true
based on our extensive empirical study.

REFERENCES

[1] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, no. 3, pp. 173–189, 1972.

[2] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin, “Fractal
prefetching B+-trees: Optimizing both cache and disk performance,”
in ACM SIGMOD International Conference on Management of Data,
2002, pp. 157–168.

[3] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul, “Cache-
oblivious string B-trees,” in ACM Symposium on Principles of Database
Systems, 2006, pp. 233–242.

[4] H. Prokop, “Cache-oblivious algorithms,” Master’s thesis, Mas-
sachusetts Institute of Technology, 1999.

[5] G. S. Brodal, R. Fagerberg, and R. Jacob, “Cache oblivious search trees
via binary trees of small height,” in ACM-SIAM Symposium on Discrete
Algorithms, 2002, pp. 39–48.

[6] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious
B-trees,” SIAM Journal on Computing, vol. 35, no. 2, pp. 341–358,
2005.

[7] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu,
J. Iacono, and A. López-Ortiz, “The cost of cache-oblivious searching,”
Algorithmica, vol. 61, no. 2, pp. 463–505, 2011.

[8] M. A. Bender, H. Hu, and B. C. Kuszmaul, “Performance guarantees
for B-trees with different-sized atomic keys,” in ACM Symposium on
Principles of Database Systems, 2010, pp. 305–316.

[9] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C.
Kuszmaul, and J. Nelson, “Cache-oblivious streaming B-trees,” in ACM
Symposium on Parallel Algorithms and Architectures, 2007, pp. 81–92.

[10] R. Pagh, Z. Wei, K. Yi, and Q. Zhang, “Cache-oblivious hashing,” in
ACM Symposium on Principles of Database Systems, 2010, pp. 297–
304.

[11] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha, “Cache-
oblivious mesh layouts,” ACM Transactions on Graphics, vol. 24, no. 3,
pp. 886–893, 2005.

[12] M. A. Bender, B. C. Kuszmaul, S.-H. Teng, and K. Wang, “Optimal
cache-oblivious mesh layouts,” Theory of Computing Systems, vol. 48,
no. 2, pp. 269–296, 2011.

[13] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kusz-
maul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok,
“Don’t thrash: How to cache your hash on flash,” PVLDB, vol. 5, no. 11,
pp. 1627–1637, 2012.

[14] S.-E. Yoon and P. Lindstrom, “Mesh layouts for block-based caches,”
IEEE Transactions on Visualization and Computer Graphics, vol. 12,
no. 5, pp. 1213–1220, 2006.

[15] F. R. K. Chung, “A conjectured minimum valuation tree,” SIAM Review,
vol. 20, no. 3, pp. 601–603, 1978.

[16] R. Heckmann, R. Klasing, B. Monien, and W. Unger, “Optimal embed-
ding of complete binary trees into lines and grids,” in Graph-Theoretic
Concepts in Computer Science, ser. Lecture Notes in Computer Science,
1992, vol. 570, pp. 25–35.

[17] P. Lindstrom and D. Rajan, “Optimal hierarchical layouts for
cache-oblivious search trees,” Tech. Rep. LLNL-CONF-641294, 2013.
[Online]. Available: http://arxiv.org/abs/1307.5899

[18] I. Safro and B. Temkin, “Multiscale approach for the network
compression-friendly ordering,” Journal of Discrete Algorithms, vol. 9,
no. 2, pp. 190–202, 2011.

[19] I. Safro, D. Ron, and A. Brandt, “Multilevel algorithms for linear
ordering problems,” Journal of Experimental Algorithmics, vol. 13, pp.
4:1.4–4:1.20, 2009.

[20] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in 24th National Conference, 1969, pp. 157–172.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1 2

3

6 7

5

4

8 9

10

13 14

12

11

30

15 16

17

20 21

19

18

22 24

23

25 26

27

28

29

31

38 39

37

40 42

41

36

43 44

45

48 49

47

46

35

50 51

52

55 56

54

53

57 58

59

62 63

61

60

34

33

32

(a) MINWEP = HALFWEP: ν0 = 1.863, ν1 = 4.140, µ1 = 3.097, µ∞ = 26

1 3

2

4 5

6

7

11 12

10

13 15

14

9

8

16 17

18

21 22

20

19

23 25

24

26 27

28

29

30

31

37 38

36

39 41

40

35

42 43

44

47 48

46

45

34

49 51

50

52 53

54

55

59 60

58

61 63

62

57

56

33

32

(b) MINEP: ν0 = 1.885, ν1 = 4.419, µ1 = 2.581, µ∞ = 23

1 3

2

5 7

6

4

8 10

9

12 14

13

11

31

15 17

16

19 21

20

18

22 24

23

26 28

27

25

29

30

36 38

37

40 42

41

39

43 45

44

47 49

48

46

35

50 52

51

54 56

55

53

57 59

58

61 63

62

60

33

34

32

(c) IN-VEBA: ν0 = 2.322, ν1 = 4.574, µ1 = 3.161, µ∞ = 27

10 11

9

13 14

12

8

17 18

16

20 21

19

15

7

24 25

23

27 28

26

22

31 32

30

34 35

33

29

6

5

38 39

37

41 42

40

36

45 46

44

48 49

47

43

4

52 53

51

55 56

54

50

59 60

58

62 63

61

57

3

2

1

(d) PRE-VEBA: ν0 = 2.835, ν1 = 7.100, µ1 = 5.145, µ∞ = 54

1 3

2

5 7

6

4

8 10

9

12 14

13

11

29

15 17

16

19 21

20

18

22 24

23

26 28

27

25

31

30

36 38

37

40 42

41

39

43 45

44

47 49

48

46

33

50 52

51

54 56

55

53

57 59

58

61 63

62

60

35

34

32

(e) IN-VEB: ν0 = 2.371, ν1 = 4.574, µ1 = 3.161, µ∞ = 25

10 11

9

13 14

12

8

17 18

16

20 21

19

15

3

24 25

23

27 28

26

22

31 32

30

34 35

33

29

4

2

38 39

37

41 42

40

36

45 46

44

48 49

47

43

6

52 53

51

55 56

54

50

59 60

58

62 63

61

57

7

5

1

(f) PRE-VEB: ν0 = 2.987, ν1 = 7.570, µ1 = 5.145, µ∞ = 50

1 3

2

5 7

6

4

9 11

10

13 15

14

12

8

17 19

18

21 23

22

20

25 27

26

29 31

30

28

24

16

33 35

34

37 39

38

36

41 43

42

45 47

46

44

40

49 51

50

53 55

54

52

57 59

58

61 63

62

60

56

48

32

(g) IN-ORDER: ν0 = 4.854, ν1 = 7.070, µ1 = 2.581, µ∞ = 16

6 7

5

9 10

8

4

13 14

12

16 17

15

11

3

21 22

20

24 25

23

19

28 29

27

31 32

30

26

18

2

37 38

36

40 41

39

35

44 45

43

47 48

46

42

34

52 53

51

55 56

54

50

59 60

58

62 63

61

57

49

33

1

(h) PRE-ORDER: ν0 = 3.116, ν1 = 7.570, µ1 = 3.081, µ∞ = 32

1 2

17

3 4

18

25

5 6

19

7 8

20

26

29

9 10

21

11 12

22

27

13 14

23

15 16

24

28

30

31

48 49

40

50 51

41

36

52 53

42

54 55

43

37

34

56 57

44

58 59

45

38

60 61

46

62 63

47

39

35

33

32

(i) IN-BREADTH: ν0 = 2.580, ν1 = 3.845, µ1 = 8.258, µ∞ = 16

32 33

16

34 35

17

8

36 37

18

38 39

19

9

4

40 41

20

42 43

21

10

44 45

22

46 47

23

11

5

2

48 49

24

50 51

25

12

52 53

26

54 55

27

13

6

56 57

28

58 59

29

14

60 61

30

62 63

31

15

7

3

1

(j) PRE-BREADTH: ν0 = 4.790, ν1 = 10.620, µ1 = 16.500, µ∞ = 32

1 2

3

4 5

6

7

8 9

10

11 12

13

14

15

16 17

18

19 20

21

22

23 24

25

26 27

28

29

30

31

37 38

36

40 41

39

35

44 45

43

47 48

46

42

34

52 53

51

55 56

54

50

59 60

58

62 63

61

57

49

33

32

(k) MINWLA: ν0 = 2.054, ν1 = 3.845, µ1 = 2.581, µ∞ = 16

8 9

7

11 12

10

5

14 15

13

17 18

16

6

4

23 24

22

26 27

25

20

29 30

28

32 33

31

21

19

2

38 39

37

41 42

40

35

44 45

43

47 48

46

36

34

53 54

52

56 57

55

50

59 60

58

62 63

61

51

49

3

1

(l) BENDER: ν0 = 3.106, ν1 = 7.570, µ1 = 4.113, µ∞ = 46

1 2

3

4 7

5

6

8 9

10

14 15

13

11

12

16 17

18

19 22

20

21

25 28

27

30 31

29

26

23

24

33 34

35

36 39

37

38

42 45

44

47 48

46

43

41

49 50

51

55 56

54

53

57 60

59

62 63

61

58

52

40

32

(m) MINLA: ν0 = 3.061, ν1 = 4.620, µ1 = 2.323, µ∞ = 12

1 2

8

3 4

9

15

5 6

10

7 12

11

16

22

13 14

17

18 19

24

23

20 21

25

26 27

31

30

29

28

37 38

33

43 44

39

34

45 46

40

50 51

47

41

35

52 57

53

58 59

54

48

60 61

55

62 63

56

49

42

36

32

(n) MINBW: ν0 = 3.554, ν1 = 4.295, µ1 = 4.581, µ∞ = 7

Fig. 7: Layouts and locality functionals ν0 (weighted edge product), ν1 (weighted edge sum), µ1 (mean edge length), and µ∞ (maximum edge length) of a
tree with h = 6 levels. For h ≤ 6, MINWEP and HALFWEP coincide. Edges ij are drawn with thickness inversely proportional to length `ij . Cuts are shown
as dashed lines that span the width of subtrees with 3 or more levels. Colored vertices are roots of in- (blue) or pre-order (red) subtrees with 2 or more levels.

